Department of

GORDON Mathematics

COLLEGE

Tutorial:

Optimal Control of Queueing Networks

Mike Veatch
Presented at INFORMS Austin
November 7, 2010




Overview

Network models

MDP formulations: features, efficient formulations
Software

Greedy policies

Fluid model policies

Monotone control: switching curve policies

M. Veatch INFORMS Austin 2



Modeling for Insight

COLLEGE

Answer questions such as
How does the length of a production line affeciropt work-in process?
How does the amount of cross-training of workefeafwaiting time?
How does the choice of which queue to serve departie queue lengths in
a reentrant flow system?

Moderate size networks
Often interested in optimal policy or its struclyveoperties

Model the features that matter the parameter range of interest
Check by simulating if needed.

Understand greedy actions and the tradeoff thaemather actions
optimal

Understand the deterministic (fluid) equivalent
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Single-class Networks
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Series line Decisions: idle/busy at upstream servégs<c, <

Make-to-stock manufacturing system finished goods are held to meet
demand. Decisions: idle/busy; Veatch and Wein (1929496)

Routing control: arrival routing; Hajek (1984)
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Multiclass Networks

Decisions: class served by each server (or sedias)i

Multiple part types

Part type I——

Part typek o,
Machine 1

Reentrant flow
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demand 1
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demand 2

Multiple part types, reentrant flow, probabilistauting
Taken from: S. MeynControlling Complex Networks
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Parallel flexible servers

. C1 C2
Harrison (1998) l
Bell and Williams (2001) l
Arbitrary mapping from Ll J L? J classes
servers to classes
M o M activities

@ 2 servers

Series line with flexible servers
Andradottir, Ayhan, and Down (2003)
Andradottir Ayhan (2005)

Additional features Harrison, A broader view of Brownian networks (2Pp03
Activities can use multiple servers, multiple jdhsses, and can produce
multiple jobs (join and split)
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MDP Modeling Issues

GORDON

COLLEGE

Describing states and transitionst) gives a common language (not
just manufacturing, communications, call centets) e

Event-based DP classifies the transitions. Kool®812007)
Choosing the objective
Time horizon?

Infinite-horizon average cost is often realistidavoids having to
choose a discount rate

Discounted has better theory
Queue length or throughput/service level?
This talk uses average weighted queue length

Also practical to minimize queue length subjecatgervice level
constraint, giving a constrained MDP. Sennott (208ifjnan (1999)
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queue length= (X, ... X)) nclasses — M

servers(i) serves class

exponentiakervice/interarrivatimes,
ratesrmand/;,

control u;= 1 if serve clasg 0 otherwise i(/i +m) =1

feasible actions: U £ x and u; £ 1for allmachines
I:ls(i)=s

“«— M [

Convert to discrete time

uniformized transition probability matrnder policyu P,
one-stage costTX

average cost

differential cosiof starting in state relative to state (n(x)

Bellman’s equation |J +h(x) =c"x+ TmAi(n)(Puh)(x), x| Z7
u X

Solutions are optimal average cdsand differential cosh’(X)
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MDP: Stochastic Processing Networks

COLLEGE

To simplify notation: no routing control, splittifmgerging or
simultaneously serving more than one customer thidhsame resource
Ay units of resourcé required to perform activity
g, units of resourc&
R; = 1 if activity] serves classand O otherwise

p; = probability that a customer finishing servicelassi will be routed
to class |

P = probability that a customer finishing serviceskaissi will depart
Feasible actionsAu g,Ru x,u O

Stability |

effective arrival ratd : / =a+P'/ min r

M = diag(7) s.t. Auf rq

static allocation LFnust have optimal solution< 1 RMu=/
u3o

Possible transitions: arrivals, routing frono j, departure
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State Space Truncations
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Construct a sequence of MDPs with finite state spg¢éhat increase to
the whole state spacg= oy ON

Transitions out 0§ are turned off or mapped to some stat§jn

Theorem (Sennott 1999) If solutionsto Bellman’s equation are bounded
above IinN (and bounded below ), then the sequence of finite state
MDPs converges to the countable state MDP in avezagieand policy

Motivates truncating the space

Naive truncationx N

Better:x, N, with N, larger for classes with arrivals
Searching for accuraté\{} requires many runs

The optimal policy on a truncated space may atad fjueue lengths in
classes without arrivals

Can determine these limits from the policy, attidasseries lines
Veatch (2006)

Other models have clearer truncations, e.g., maenitory level
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Non-exponential Distributions
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Method of stages
Service time is sum of exponentials (smaller cogfit of variation)
Adding Sstages multiplies number of states3dpr each server
Can uniformize to obtain discrete time Markov chasnbefore
Embed DTMC at service completions (one non-exponeat distr.)

Number of arrivals in a period ~ Poisson. Increasamber of
transitions (nonzeros iR)

Discretization: Sample at discrete times
Number of potential events in a period ~ Poisson.

Deterministic service times
Machines often have nearly constant processingstphes failures
Discretize. If service time = time step, no addiéibstates are needed.
Service times must be equal
If service times are small integer ratios, servicee =k(time step)
Must keep track of “age,” multiplying number of satoyk
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Machine Failures

COLLEGE

a; = 1 if machind is operational, O if failed
Each unreliable machine doubles the number ofsstate

Approximate model: limit the number of failed s&tnd adjust failure
rate Veatch (2006)

Use with deterministic service times: one sourceaniability
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Speed_ups

COLLEGE

Avoid self-transitions when uniformizing, e.g., usaximum service
rate of a server, not the sum of its service rates

Initialize h from previous runs or a simulated policy

Apply penalty at queue length boundaryx I N and a transition
Increases;, project the new state back to the boundary apt/ap
penalty computed from a previous run

Asynchronous value iteration

Numerical results for a make-to-stock series limd & unreliable
machines. Runs with 12 million states took 7 hours

Enhancements Iterationslime (sec)
None 3300 357
Asynchronous VI 2900 258
Initialiazation 1100 93.6
Boundary penalty 800 72.8
Limited number of failures 800 36.9
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Software: Generality

M A Supported by NSF Grant DMI-0620787

Stochastic processing network structure is an Input

Number of classes determines number of nested:lcopstes n-
dimensional counters. Outer loops use countery ilmog just

Increments an integer
Loop over feasible actions
Arbitrary routing within the network: comput® (h)(x)

Create :
. . Walue [teration
JSOSPM &N n—-dimensiconal Byg. cost
/' parameters ol nter lh ,x'l & policy
allocate arrays =
Faolicy
' il
Wiewer
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Software: Usabillity

GORDON

COLLEGE

Commented input file contains all data
network structure: server-to-class mapping, routing
arrival and service rates
algorithm parameters, including queue length trtiona
Includes documentation

Extensively tested and used at Gordon College; $estmg by other
researchers

Access: Download and compile C++ code
http://www.math-cs.gordon.edu/~senning/softwaretdmd . 1.1 .tar.gz

(look on http://www.math-cs.gordon.edu/~senning/gnetdet the
latest version).
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Software: Speed

GORDON
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Solved 6-class example with traffic intensity dd @vith truncation
(40, 2, 40, 10, 4, 4) in ~1 hour
Truncation has 1.4 million states, appears accuwatgthin 0.1%

a
1
— m e T |—
a
3
—» M3 p My
s > T |—»

M. Veatch INFORMS Austin 19



Ay Optimal Policy, 2 x 2 “N”

COLLEGE

e
e

c=(1,3),m= (1, .5, 1), traffic intensity = .9
As arrival ratd ; increases, more “helping”
IS used
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O serve class 2

@ serve class 1 (help)
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Optimal Policy-: 3 x 3 Floater

GORDON

COLLEGE

@ @

Server 3:

@ serveclass 1
o serve class 2
® serve class 3

Resembles Longest Queue policy, particularly itestavith smalk
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Optimal Policy: 3 x 3 Chain

Server 1 Server 2 Server 3
@ serve class 1 1 2 3

O serve class 2

@® serve class 3 @ @
Server 1 gives nearly static priority to class ifjlflest cost)
Server 3 often serves class 2 (middle cost), ealpeerhenx, is large

Explanation: server 2 is serving class 1 in théses
M. Veatch INFORMS Austin 22
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- Greedy Policies

greedy policy u(x) = ariglpi)n E, (CT X(t+1)|x(t) = x)

A network admits @athwise optimal solutioif, from any

Initial state, there is a policy that minimizes tuest rate at
all timest with probability one

Implies that greedy is optimal

Forlinear cost ¢x, greedy action depends only on which
buffers are empty, so greedysisitic priorityfor x> 0

Examples
Multiclass queuec/mrule
Klimov’s problem: single server with rework
Other systems with certain parameter values
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- Establishing Greedy Optimality

Stochastic coupling
Walrand (1988) route to shortest queue
Liu, Nain, Towsley (1995) sample path methods
de Vericourt and Veatch (2003) make-to-stock queue
Trajectories under two different policies are comspa

Show that one trajectory has smaller (or equal) ide at
all times; may eventually merge with probabilityeon

Preservation by DP operator

If the greedy policy is alsb'-greedy, it is optimal

u’ (x) =argmin E, (h(x(t +1) | x(t) = x)
ul A(x)

Show that this property is preserved by the DP atper
Then greedy is optimal for all time horizons.
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- A cmRule for the “N” System

l |

1 2

@ @

Theoremlf C,/m,3 ¢,/13, then thecsrrule is optimal.

Thecrmrule sets Server 2's priorities. Wher= 1, resolve competition
for class 1 customer using greedy.

For the case in the theorem:

Server 2 gives priority to class 2: “fixed beford gy
Uses the faster server wher (1, 0)
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A cm Rule for m x m Two-tiered

@

Theoremlf servers can cooperasndc,/m 2 ¢,my, 1=2, ,m then the
crmrule is optimal.

Thecrmule for this case:
Server 2: priority to class 2
Server 3: priority to class 3
etc.
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- cmRules—Parallel Flexible Servers

Multiclass queue:Buyukkoc, Varaiya, and Walrand (1985)
Time interchange argument

Uses discretization (or discrete time model) so #navals are
iIndependent of service C,Mm,3 CMy,

“N” system with “fixed before help”
Down and Lewis (2008) Policy is preserved by DPrajos

Veatch (2008 w.p.) Stochastic coupling: processaiga) but policy is
not just a time interchange

“W” system with “fixed before help” and failures

Saghafian, Van Oyen, and Kolfal (2009 w.p.) Poleypieserved by DP
operator

m~ m Two-tiered system with “fixed before help”

Stochastic coupling: processes do not (always) epdmgt expected
future cost is equal
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- When Are Greedy Policies Not Optimal?

There must be tmadeoffbetween short-term and future costs

Future costs are incurred by the greedy policwtined to an optimal
policy, onlywhen a queue empties under the greedy policy,fgrtie
action to change—e.q., idling a server

The optimal policy uses safety stock, or bufferitagprevent future
idleness

The queue may empty because a slower server Tyt lp or
because of random service times

v m

router :I | no

a=1,m=(05,15¢c=(1,15)
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- When to Consider Switching Curves

First identify atradeoffbetween short-term and future costs
Does the future cost occur with sufficient probi&ptio be significant?

Sensitivities are near boundaries of the statees(samall queues)—the
exact location of the switching curve usually ddesratter

Chen, Pandit and Meyn (2003) In search of sengitivit

The queue may empty because a slower server Tyt lp or
because of random service times
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- Fluid Model

Replace processes by their mean rates. Contindeteministic, transient

V*(X) = rrLin OTc(t](t)dt

where B=(PC- DM

g(t) =Bu(t) +a M =diag(/n)
q(0) =x

Discretefeasibility (DFEAS) Fluid feasibility (FFEAS)

Cu(t)Ee Cu(t) £1

ut)s o u(t)s o

boundary boundary

u(t)=0if x(t)=0 [Bu(t)+/v(t)]; 2 0if g(t)=0

(FFEAS) does not imply (DFEAS)
Greedy for fluid differs from greedy for discretely on boundaries

There may be ranslation feasibility problem
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- Fluid Limits and Asymptotic Optimality

For each work-conserving policy ard R",, consider a sequence of processes
xNwith initial statesNx

. .= t
cumulative allocation: T (t) = v (s)ds

Existence of fluid limit Dai (1995) For a.e. sample path, there is a sules®gu
ofi(XN(Nt) 'FN(Nt)) that converges u.o.c. tq(f), T(t)) satisfying
N ]

(FFEAS), the fluid dynamics, an(t) = ;ui (5)ds

Asymptotic optimality Meyn (2000) If a stable policy exists, then thexests
an optimal policy for the MDP whose fluid limitseaoptimal for the fluid.
Further, . h () _

®¥ V" (gx)
The fluid limit may not be unique or easily constad
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- Scaling the Policy

scaled policy: U(X) =lim g, G( Nx, , , NX, ) when limit exists

fluid limit policy: Under mild conditions, the collection of fluid limi

trajectories under a policy defines a fluid poligy) except ak where
the control changes (the allocatidft) is not differentiable) or
the fluid limit is not unique ../Assume

1) Unique fluid limits from all initial states (e&pt a set of lower dim.)

2) Scalable scaled policy exists and consists only of extr@oiats (“ “)

control switching sets (CSSs)egion where a certain action istised

Theoremin the interior of a CSS of full dimension, theiddimit policy
matches the scaled policy.

Corollarylf a stable policy exists for the MDP, then thexests a discrete
optimal policy whose scaled policy matches somi fiyptimal policy in
the interior of CSSs of full dimension.

Asymptotic slopes of switching curves agree
for some discrete optimal policy and fluid optirpalicy.
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- Arrival Routing: Fluid and MDP Policy

v |

router :. | no

Case la m Case 2a<m
a=1,m=(0.65,0.65)c=(1, 2) a=1,m=(05,15¢c=(1,15)
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- Fluid Switching CurvesSummary

Holds for other problems and higher dimensions:liraar
cost sequencing and routing problems, the fluiccgalefines
asymptotic slopes of switching surfaces

Fluid policies can be computed for small or simmieblems
Distinguish three cases:

1) Neither is greedyBoth have interior switching; fluid policy is
“close.” Non-greedy policy because a server will fedhind.

2) Fluid is greedyMDP has interior switching and is non-greedy
to buffer against randomness.

3) Both are greedyrluid policy matches MDP policy except on
boundary
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- Monotone Control

Optimal policies have switching curve form in mosidels:
serve classwhenx, s(x) and clasg otherwise X;, x; > 0)

Generalizes to models witdosts of serviceoptimal class
service rate Is increasing (decreasingy liknown as
monotone control

Geometry of transitions

Serve departing classtransitionx ® x - e will be decreasing
in x if his submodular h(x+&)- h(x)* h(x+g +€;)- h(x+¢)

Interpretation: a departure from gquguean turn classservice
on but not off (increase service rat®)ore-morerelationship

Supermodularh(x+g)- h(x) £h(x+¢ +e;)- h(x+e;)

A departure from queyecan turn classserviceoff but not on
(increase service ratéd\lore-lessrelationship
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- Submodularity-type Inequalities

Can extend submodularity to other transitidnandd
h(x+d;)- h(x) 3 h(x+d, +d;)- h(x+d;) Veatch and Wein (1992)
Altman et al. (2003) extensively study the most n@n

transitions, i.e.d = g - g for a customer moving from one
class to another

Convexity is often included with submodularityctn be
Interpreted as: a transition occuring can turn tirzatsition off
but not on.

Implications for switching curves

Submodularity and convexity imply that the switchmgve
for a class departures is monotonic ¥

Similar limitations on switching curves for othearisitions;
see Veatch and Wein (1992)
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Establishing Submodularity-type Inequaliti

Show that the inequalities (generally includingoexity) hold
for the cost rate and are preserved by the DP tera

Many papers do this in an ad hoc fashion for ondeho

Most difficulties occur at the state space boursdarsome
general results in Weber and Stidham (1987) andcViesatd
Wein (1992)

The score space approach of Glasserman and Yao)(1994
converts all transitions tg but increases the dimension

Koole (2007) provides a general framework using ebased
DP: the DP operator is decomposed into simple opex,a
each of which is shown to preserve certain inegaali

Induction onx; has been used on some problems Wu, Lewis,
and Veatch (2005)
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- Conclusion

Computing power and careful truncation, etc. mak®ssible
to compute optimal control for interesting netwovkgh
several classes and additional features

General software makes it convenient (“standarcClsdstic
processing networks)

Look for tradeoffs and main features of a modebbef
numerically optimizing

Policy visualization software makes it easier twkidor policy
Insights

Fluid analysis can give more information aboutdpamal
policy: asymptotic slopes of switching curves

Switching curve policies are pervasive and canrbggn for
some networks
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