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Overview

� Network models

� MDP formulations: features, efficient formulations

� Software

� Greedy policies

� Fluid model policies

� Monotone control: switching curve policies
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Modeling for Insight

� Answer questions such as
How does the length of a production line affect optimal work-in process?
How does the amount of cross-training of workers affect waiting time?
How does the choice of which queue to serve depend on the queue lengths in 

a reentrant flow system?

� Moderate size networks

� Often interested in optimal policy or its structural properties 

� Model the features that matter for the parameter range of interest. 
Check by simulating if needed.

� Understand greedy actions and the tradeoff that makes other actions 
optimal

� Understand the deterministic (fluid) equivalent
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Series line  Decisions: idle/busy at upstream servers
Make-to-stock manufacturing system: finished goods are held to meet 

demand. Decisions: idle/busy; Veatch and Wein (1994, 1996)

Routing control: arrival routing; Hajek (1984)

Single-class Networks
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� Decisions: class served by each server (or server idles)
Multiple part types

Reentrant flow

Multiclass Networks
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� Multiple part types, reentrant flow, probabilistic routing
Taken from: S. Meyn, Controlling Complex Networks

A Manufacturing Network
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Parallel flexible servers
Harrison (1998)
Bell and Williams (2001) 
� Arbitrary mapping from 

servers to classes

Series line with flexible servers
Andradottir, Ayhan, and Down (2003) 
Andradottir Ayhan (2005)

Additional features Harrison, A broader view of Brownian networks (2003)
� Activities can use multiple servers, multiple job classes, and can produce 

multiple jobs (join and split) 

Stochastic Processing Networks
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MDP Modeling Issues

� Describing states and transitions in Zn
+ gives a common language (not 

just manufacturing, communications, call centers, etc.)
� Event-based DP classifies the transitions. Koole (1998, 2007)

Choosing the objective
� Time horizon?

� Infinite-horizon average cost is often realistic and avoids having to 
choose a discount rate

� Discounted has better theory
� Queue length or throughput/service level?

� This talk uses average weighted queue length
� Also practical to minimize queue length subject to a service level 

constraint, giving a constrained MDP. Sennott (2001), Altman (1999) 
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queue lengthsx = (x1, …,xn)  n classes
servers(i) serves class i
exponential service/interarrivaltimes,
ratesmi and l i,

control ui = 1  if serve class i,  0 otherwise
feasible actions: 

Convert to discrete time
uniformized transition probability matrix under policy u Pu

one-stage costcTx
average costJ
differential cost of starting in state x relative to state 0: h(x)
Bellman’s equation

Solutions are optimal average cost J* and differential cost h*(x)

Average Cost MDP: Multiclass Network
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� To simplify notation: no routing control, splitting/merging or 
simultaneously serving more than one customer with the same resource

Akj units of resource k required to perform activity j
qk units of resource k
Rij = 1 if activity j serves class i and 0 otherwise
pij = probability that a customer finishing service at class i will be routed 

to class j
pi0 = probability that a customer finishing service at class i will depart
� Feasible actions:Au � q, Ru� x, u � 0
Stability
effective arrival ratel :  
M = diag(mj)
static allocation LPmust have optimal solution r < 1

� Possible transitions: arrivals, routing from i to j, departure

MDP: Stochastic Processing Networks
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State Space Truncations

� Construct a sequence of MDPs with finite state spaces SN that increase to 
the whole state space, 

� Transitions out of SN are turned off or mapped to some state in SN

Theorem (Sennott 1999) If solutions h to Bellman’s equation are bounded 
above in N (and bounded below in x), then the sequence of finite state 
MDPs converges to the countable state MDP in average cost and policy

� Motivates truncating the space 
� Naïve truncation: xi � N
� Better: xi � Ni with Ni larger for classes with arrivals
� Searching for accurate {Ni} requires many runs
� The optimal policy on a truncated space may also limit queue lengths in 

classes without arrivals
� Can determine these limits from the policy, at least for series lines 

Veatch (2006)
� Other models have clearer truncations, e.g., max inventory level

�
¥
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Non-exponential Distributions

Method of stages
� Service time is sum of exponentials (smaller coefficient of variation)
� Adding S stages multiplies number of states by Sfor each server
� Can uniformize to obtain discrete time Markov chain as before
Embed DTMC at service completions (one non-exponential distr.)
� Number of arrivals in a period ~ Poisson.  Increases number of 

transitions (nonzeros in P)
Discretization: Sample at discrete times
� Number of potential events in a period ~ Poisson. 
Deterministic service times
� Machines often have nearly constant processing times plus failures
� Discretize. If service time = time step, no additional states are needed. 

Service times must be equal
� If service times are small integer ratios, service time = k(time step) 

Must keep track of “age,” multiplying number of states by k
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Machine Failures

� a i = 1 if machine i is operational, 0 if failed 

� Each unreliable machine doubles the number of states

� Approximate model: limit the number of failed states and adjust failure 
rate  Veatch (2006)

� Use with deterministic service times: one source of variability 
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Speed-ups

� Avoid self-transitions when uniformizing, e.g., use maximum service 
rate of a server, not the sum of its service rates

� Initialize h from previous runs or a simulated policy
� Apply penalty at queue length boundary: If xi = Ni and a transition 

increases xi, project the new state back to the boundary and apply a 
penalty computed from a previous run

� Asynchronous value iteration
� Numerical results for a make-to-stock series line with 5 unreliable 

machines. Runs with 12 million states took 7 hours
 
Enhancements Iterations Time (sec) 
None 3300 357 
Asynchronous VI 2900 258 
Initialiazation 1100 93.6 
Boundary penalty 800 72.8 
Limited number of failures 800 36.9 
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Software: Generality
Supported by NSF Grant DMI-0620787

� Stochastic processing network structure is an input!
� Number of classes determines number of nested loops: creates n-

dimensional counters. Outer loops use counter, inner loop just 
increments an integer

� Loop over feasible actions
� Arbitrary routing within the network: compute (Pu h)(x)
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Software: Usability

� Commented input file contains all data
network structure: server-to-class mapping, routing
arrival and service rates
algorithm parameters, including queue length truncations

� Includes documentation
� Extensively tested and used at Gordon College; some testing by other 

researchers
� Access: Download and compile C++ code
http://www.math-cs.gordon.edu/~senning/software/qnetdp-1.1.1.tar.gz
(look on http://www.math-cs.gordon.edu/~senning/qnetdpto get the 

latest version).
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Software: Speed

� Solved 6-class example with traffic intensity of 0.6 with truncation 
(40, 2, 40, 10, 4, 4) in ~1 hour

� Truncation has 1.4 million states, appears accurate to within 0.1%

m
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c = (1,3), mmmm= (1, .5, 1), traffic intensity = .9
� As arrival rate l 1 increases, more “helping”

is used

l 1 = 0.9 l 1 = 1 l 1 = 1.1

serve class 2
serve class 1 (help)

Optimal Policy, 2 x 2 “N”

1 2

1 2
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Server 3:
serve class 1
serve class 2
serve class 3

� Resembles Longest Queue policy, particularly in states with small xi

Optimal Policy-: 3 x 3 Floater

1 2

1 2

3

3
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Server 1 Server 2 Server 3

serve class 1
serve class 2
serve class 3

� Server 1 gives nearly static priority to class 1 (highest cost)
� Server 3 often serves class 2 (middle cost), especially when x1 is large

Explanation: server 2 is serving class 1 in these states

Optimal Policy: 3 x 3 Chain 

1 2

1 2
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Greedy Policies

greedy policy

� A network admits a pathwise optimal solutionif, from any 
initial state, there is a policy that minimizes the cost rate at
all times t with probability one
� Implies that greedy is optimal

� For linear cost cTx, greedy action depends only on which 
buffers are empty, so greedy is static priorityfor x > 0

� Examples

� Multiclass queue: cmrule
� Klimov’s problem: single server with rework
� Other systems with certain parameter values
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Establishing Greedy Optimality

Stochastic coupling
� Walrand (1988) route to shortest queue
� Liu, Nain, Towsley (1995) sample path methods
� de Vericourt and Veatch (2003) make-to-stock queue
� Trajectories under two different policies are compared
� Show that one trajectory has smaller (or equal) cost rate at 

all times; may eventually merge with probability one
Preservation by DP operator
� If the greedy policy is also h*-greedy, it is optimal

� Show that this property is preserved by the DP operator.  
Then greedy is optimal for all time horizons.
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A cmRule for the “N” System

Theorem. If then the cmrule is optimal.

� The cmrule sets Server 2’s priorities. When x1 = 1, resolve competition 
for class 1 customer using greedy. 

� For the case in the theorem:
� Server 2 gives priority to class 2: “fixed before help”
� Uses the faster server when x = (1, 0)

211222 mm cc ³

1 2

1 2



M. Veatch INFORMS Austin 27

Theorem. If servers can cooperateand then the 
cmrule is optimal.

Thecmrule for this case: 
� Server 2: priority to class 2
� Server 3: priority to class 3
� etc.

A cm Rule for m x m Two-tiered

micc iiii ,,2  ,11 �=³ mm

1 2

1 2
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cmRules—Parallel Flexible Servers

Multiclass queue: Buyukkoc, Varaiya, and Walrand (1985)
� Time interchange argument
� Uses discretization (or discrete time model) so that arrivals are 

independent of service
“N” system with “fixed before help”
� Down and Lewis (2008) Policy is preserved by DP operator
� Veatch (2008 w.p.) Stochastic coupling: processes merge, but policy is 

not just a time interchange
“W” system with “fixed before help” and failures
� Saghafian, Van Oyen, and Kolfal (2009 w.p.) Policy is preserved by DP 

operator
m ´́́́ m Two-tiered system with “fixed before help”
� Stochastic coupling: processes do not (always) merge, but expected 

future cost is equal    

211222 mm cc ³
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When Are Greedy Policies Not Optimal?

� There must be a tradeoffbetween short-term and future costs
� Future costs are incurred by the greedy policy, relative to an optimal 

policy, onlywhen a queue empties under the greedy policy, forcing the 
action to change—e.g., idling a server

� The optimal policy uses safety stock, or buffering, to prevent future 
idleness

� The queue may empty because a slower server can’t keep up or 
because of random service times

a = 1, m= (0.5, 1.5), c = (1, 1.5)  

router

m1

m2

a
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When to Consider Switching Curves

� First identify a tradeoffbetween short-term and future costs

� Does the future cost occur with sufficient probability to be significant?
�
� Sensitivities are near boundaries of the state space (small queues)—the 

exact location of the switching curve usually doesn’t matter
Chen, Pandit and Meyn (2003) In search of sensitivity…

� The queue may empty because a slower server can’t keep up or 
because of random service times
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Fluid Model

� Replace processes by their mean rates.  Continuous, deterministic, transient

where

� (FFEAS) does not imply (DFEAS) 
� Greedy for fluid differs from greedy for discrete only on boundaries
� There may be a translation feasibility problem
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Fluid Limits and Asymptotic Optimality

For each work-conserving policy and xÎ Rn
+, consider a sequence of processes 

xN with initial states  Nx
cumulative allocation:

Existence of fluid limit Dai (1995) For a.e. sample path, there is a subsequence 
of that converges u.o.c. to (q(t), T(t)) satisfying

(FFEAS), the fluid dynamics, and

Asymptotic optimality Meyn (2000) If a stable policy exists, then there exists 
an optimal policy for the MDP whose fluid limits are optimal for the fluid. 
Further, 

� The fluid limit may not be unique or easily constructed
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Scaling the Policy

scaled policy: when limit exists
fluid limit policy: Under mild conditions, the collection of fluid limit
trajectories under a policy defines a fluid policy u(x) except at x where

� the control changes (the allocation T(t) is not differentiable) or
� the fluid limit is not unique …Assume:

1) Unique fluid limits from all initial states (except a set of lower dim.)
2) Scalable: scaled policy exists and consists only of extreme points (“ “)
control switching sets (CSSs): region where a certain action is used
TheoremIn the interior of a CSS of full dimension, the fluid limit policy 

matches the scaled policy.
CorollaryIf a stable policy exists for the MDP, then there exists a discrete 

optimal policy whose scaled policy matches some fluid optimal policy in 
the interior of CSSs of full dimension.

Asymptotic slopes of switching curves agree 
for some discrete optimal policy and fluid optimal policy. 

��u (x) = lim N®¥ ˜ u ( Nx1� � ,� , Nxn� � )

u 
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Arrival Routing: Fluid and MDP Policy

Case 1. a � m2

a = 1, m= (0.65, 0.65), c = (1, 2)
Case 2. a < m2

a = 1, m= (0.5, 1.5), c = (1, 1.5)

router
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m2

a
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Fluid Switching Curves- Summary

� Holds for other problems and higher dimensions: For linear 
cost sequencing and routing problems, the fluid policy defines 
asymptotic slopes of switching surfaces

� Fluid policies can be computed for small or simple problems
� Distinguish three cases:

1) Neither is greedy. Both have interior switching; fluid policy is 
“close.” Non-greedy policy because a server will fall behind.

2) Fluid is greedy.MDP has interior switching and is non-greedy 
to buffer against randomness.

3) Both are greedy.Fluid policy matches MDP policy except on 
boundary
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Monotone Control

� Optimal policies have switching curve form in most models: 
serve class i when xk � s(x) and class j otherwise (xi, xj > 0)

� Generalizes to models with costs of service: optimal class i
service rate is increasing (decreasing) in xj, known as 
monotone control

Geometry of transitions 

� Serve departing class i: transition x ® x - ei will be decreasing 
in xj if h is submodular:

� Interpretation: a departure from queue j can turn class i service 
onbut not off (increase service rate). More-more relationship

� Supermodular:
A departure from queue j can turn class i service off but not on 
(increase service rate). More-less relationship

)()()()( jjii exheexhxhexh +-++³-+

)()()()( jjii exheexhxhexh +-++£-+
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Submodularity-type Inequalities

� Can extend submodularity to other transitions di and dj

Veatch and Wein (1992)
� Altman et al. (2003) extensively study the most common 

transitions, i.e., d = ei - ej for a customer moving from one 
class to another

� Convexity is often included with submodularity. It can be 
interpreted as: a transition occuring can turn that transition off 
but not on.

Implications for switching curves
� Submodularity and convexity imply that the switching curve 

for a class i departures is monotonic in xj

� Similar limitations on switching curves for other transitions;
see Veatch and Wein (1992)

)()()()( jjii dxhddxhxhdxh +-++³-+
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Establishing Submodularity-type Inequalities

� Show that the inequalities (generally including convexity) hold 
for the cost rate and are preserved by the DP operator

� Many papers do this in an ad hoc fashion for one model
� Most difficulties occur at the state space boundaries; some 

general results in Weber and Stidham (1987) and Veatch and 
Wein (1992)

� The score space approach of Glasserman and Yao (1994) 
converts all transitions to ei but increases the dimension

� Koole (2007) provides a general framework using event-based 
DP: the DP operator is decomposed into simple operators, 
each of which is shown to preserve certain inequalities

� Induction on xi has been used on some problems Wu, Lewis, 
and Veatch (2005) 
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Conclusion

� Computing power and careful truncation, etc. make it possible 
to compute optimal control for interesting networks with 
several classes and additional features

� General software makes it convenient (“standard” stochastic 
processing networks)

� Look for tradeoffs and main features of a model before 
numerically optimizing

� Policy visualization software makes it easier to look for policy
insights

� Fluid analysis can give more information about the optimal 
policy: asymptotic slopes of switching curves

� Switching curve policies are pervasive and can be proven for 
some networks


