
1

Enhanced Dynamic Programming Algorithms

for Series Line Optimization
Michael H. Veatch* May 2005

Abstract

Dynamic programming value iteration is made more ef�cient on a �ve-machine unreliable series

line by characterizing the transient and �insensitive� states. Holding costs are minimized subject to a

service level constraint in a make-to-stock system with backordering. State space truncations are chosen

by checking the recurrent class in previous runs. An approximate model is developed that reduces the

number of machine states. Monotone control theory is used to restrict the search for a control switching

surface. Numerical optimal policies are compared with the heuristic control point policy and several

characteristics of optimal policies are identi�ed.

Index Terms

Make-to-stock, production line, dynamic programming, control point policy.

I. INTRODUCTION

Queueing network control problems are so computationally intense that dynamic programming

(DP) has mostly been used for systems with only two or three buffers. The curse of dimensionality

and typically large truncations lead to very large state spaces. Also, implementing an optimal

policy requires look-up from a table, the size of which is again exponential in the number of

buffers. Nevertheless, numerical optimization has played a signi�cant role in the study of these

networks, providing insights about the structure of optimal policies in demand driven systems

[1],[2],[3] and reentrant lines [4]. These insights can complement analytic methods, such as

monotone control, stochastic comparison, and asymptotic analysis. Optimization is also valuable

*Department of Mathematics, Gordon College, Wenham, MA 01984, (978) 867-4375, veatch@gordon.edu

2

dem and

backorders

M1 B1 Mk Bk

Fig. 1. A make-to-stock series line.

for assessing the performance of heuristics. Although performance bounds are available [5],[6]

their tightness is not very satisfying, particularly in balanced heavy traf�c.

This paper enhances the DP value iteration algorithm using detailed understanding of a

particular network. A series make-to-stock line with �ve unreliable machines is optimized. The

model has 25 machine states as well as �ve buffers. The objective is to minimize long-run average

holding cost subject to a service level constraint (see [7] for motivation). Service, failure, repair,

and demand interarrival times are exponentially distributed. Several speedups are developed for

this network, including a method for choosing state space truncations after one run (as opposed

to doing sensitivity analysis on each buffer size), an approximate model that eliminates low

probability machine states, and using the monotone form of the control to reduce the number

of minimizations. For comparison, using more computing resources but standard value iteration,

a six buffer problem has been solved in moderate (but not heavy) traf�c [8] and a six buffer

problem with input control has been solved using a similar truncation method [9]. Numerical

results lead to several observations about the structure of optimal policies. A heuristic called the

control point policy [10] is also tested.

II. THE MAKE-TO-STOCK LINE

Consider a production system with k machines in series. Parts are processed by machine 1,

enter buffer 1, are processed by machine 2, and so on (Figure 1). The �nal buffer contains �nished

goods and is used to satisfy exogenous demand. If it is empty, the demand is backordered. Raw

material is always available to machine 1. Denote by xi(t) the number of parts in buffer i,

including any part being processed at the (i + 1)th machine, at time t. Note that xi 2 Z+,

3

i = 1; : : : ; k � 1 but xk 2 Z, with xk < 0 representing backorders. Machines are subject to

operation-dependent failures, that is, they can fail only when processing a part. Write �i(t) = 1

if machine i is operational at time t and 0 if failed. The processing time, operating time until

failure, and repair time of machine i are independently exponentially distributed with rates �i,

pi, and ri, respectively. Demand interarrival times are also exponentially distributed with rate �.

Stability of the system requires that � < �iri= (ri + pi) for all i:

The decision is whether or not each machine processes a part. Processing can be preempted.

Let ui(t) = 1 if machine i is processing at time t and 0 if it is not. Admissible controls are

nonanticipating and have ui(t) � �i(t)xi�1(t), i > 1, and u1(t) � �1(t), i.e., machines cannot
process when starved or failed. Holding cost is incurred at the rate c(x) =

Pk�1
i=1 cixi + ckx

+
k in

state x, with ci > 0 for all i. It will be suf�cient to consider only stationary Markov policies,

written as u(�;x) = (u1(�;x); : : : ; uk(�;x)), which are also unichain. Hence, there is a unique

stationary distribution and long-run averages do not depend on the initial state. We wish to

minimize long-run average holding (�inventory�) cost

JI = lim sup
T!1

1

T
E�;x

Z T

0

c(x(t))dt (1)

subject to the service level constraint � � Pfxk > 0g � �0 for some �0 > 0. Here E�;x denotes
expectation given the initial state �(0) = �, x(0) = x and policy u and Pf�g is with respect to
the stationary distribution.

Instead of solving the constrained MDP, introduce the Lagrangian problem as the unconstrained

MDP that minimizes J(b), de�ned as in (1) but with �c(x) = c(x)+ b1fxk�0g replacing c(x). The

constant b can be interpreted as the penalty per unit time for stockouts. It is shown in [11] that,

for a �xed b, if J�(b) is optimal for the Lagrangian problem and the associated ��(b) = �0, then

J�I = J
�(b)� ��(b)b, i.e., the cost (1) associated with this policy is optimal for the constrained

problem. Viewed as a function of b, J�(b) � ��(b)b is nondecreasing and piece-wise constant.
Varying b generates points (�0; J�I). Between these points, the optimal policy for the constrained

problem requires randomization in one state [12, theorem 4.4]. These discontinuities in J�I are

small, so randomization will be neglected.

The process is uniformized with the potential event rate � = �+
P
(�i+pi). Letting ei denote

4

the ith standard basis vector and e0 = 0, de�ne the DP operator

Th(�;x) =
1

�
[c(x) + �h(�;x� ek) +

kX
i=1

((1� �i) [rih(�+ ei;x) + (�i + pi � ri)h(�;x)]

+ �iminf(�i + pi)h(�;x); �ih(�;x� ei�1 + ei) + pih(�� ei;x)g)] (2)

for all states (�;x). Boundaries are enforced by replacing x� ei�1 + ei with x when xi�1 = 0.
The standard value iteration (VI) algorithm is h0(�;x) = 0 and

Jn+1 = �(Thn)(1; ek); hn+1(�;x) = (Thn)(�;x)� Jn+1=� (3)

where (�;x) = (1; ek) has been chosen as the reference state. It converges, hn ! h, and the

optimal policy can be recovered from the differential cost function h.

The service level ��(b) is computed simultaneously with VI. De�ne the one-step operator

T�n as in (2) but replace c(x) with 1fxk>0g and use the policy that achieves the min in (2) at

each iteration, i.e., use the �rst (second) term in the min if ui = 0 (1). Along with (3) compute

h�0 (�;x) = 0 and

�n+1 = �(T
�
nh

�
n)(1; ek); h

�
n+1(�;x) = (T

�
nh

�
n)(�;x)� �n+1=�: (4)

Since un converges to the optimal policy for the Lagrangian problem, �n ! ��(b).

III. SPEED-UP STRATEGIES

First we describe two general modi�cations to the VI algorithm.

Flexible VI. Select an ordering of the states and compute hn+1 in that order, starting with the

reference state. Replace hn with hn+1 in (3) at states where it has already been computed, making

use of the updated approximation hn+1(x) sooner. We are not aware of a proof of convergence

for this algorithm, but it performs well in numerical tests [13].

Initialization. Since it is necessary to solve the Lagrangian problem repeatedly with different

values of b, the �nal h and h� from one run can be used as h0 and h�0 for the next run.

Next we describe speci�c enhancements and approximations for this problem.

State space truncation. The state space is truncated to xi � Ui; i = 1; : : : ; k and xk � L.

Searching for the smallest accurate truncation can require many runs. We propose a faster method.

For the optimal policy, the recurrent class is bounded above. De�ne

Ni = max
�;x
fxi : (�; x) is recurrentg: (5)

5

A method to compute Ni from the optimal policy is given in Appendix A. If Ni � Ui�1 for all i,
then the upper truncation is suf�ciently large (increasing Ni will not change the results) for this

L. Numerical experience suggests that Ni is fairly insensitive to Nj , j 6= i, and nonincreasing
in L, suggesting that Ui = Ni be used for future runs with larger L. If it is impractical to �nd

a suf�ciently large truncation for some buffers, one must revert to sensitivity analysis to justify

these Ui. However, if Nk = Uk, we increase Uk, since results are very sensitive to this truncation.

The lower truncation on xk can never be exact. The accuracy of similar runs can be improved

by applying a penalty on the boundary from a run with smaller L. Let

�h(�;x1; : : : ; xk�1) = h(�;x1; : : : ; xk�1; L� 1)� h(�;x1; : : : ; xk�1; L) (6)

where L is the tighter truncation to be used in the current run and h is the �nal hn from a previous

run. At the lower boundary xk = L, replace h(�;x� ek) with h(�;x) +�h(�;x1; : : : ; xk�1) in
(2). The analogous penalty is used in h� .

Reduced model of machine failures. If the machines are fairly reliable, then states in which

many machines are down have low probability. These states will be omitted by turning off failures

when D machines are down. To improve the accuracy of the approximation, failure rates are

adjusted. Denoting the number of machines down by d(t) = k � j�(t)j and the adjusted model
by a tilda, we �nd failure rates epi such that, in a model with time-dependent failure rates,

E[ed] = E[d]: (7)

Formulas for epi are derived in Appendix B for D = 1 and 2 in the homogeneous machine case,
where (�=�i)pi and ri are constant over i. The reduced model replaces (2) with

TDh(�;x) =
1

�
[c(x) + �h(�;x� ek) +

kX
i=1

((1� �i) [rih(�+ ei;x) + (�i + pi � ri)h(�;x)]

+ �i(�i + pi)minfh(�;x); h(�;x� ei�1 + ei)g)] (8)

for k � j�j = D and TD = T for k � j�j < D. Similar modi�cations are made to T �u .
Search for switching surface. The optimal policy consists of regions of constant control in

the inventory space; their boundaries are called control switching surfaces. This structure of the

optimal control can be enforced at every iteration to reduce the number of minimizations. Holding

other variables constant and decreasing xk, the control uk switches from idle to processing. Once

this switching threshold is located, the minimization for machine k need not be performed in

6

states with smaller xk. In the examples the machine k switching surface is a nondecreasing

and nearly constant function of xi, i < k (see Appendix A), allowing most of the rest of the

minimizations to be avoided. This method is not applied to other controls because a signi�cant

overhead is incurred in keeping track of the multiple switching surfaces.

The algorithm with these changes is summarized below.

Initialization

1. Choose a limit D on the number of machines down and compute the adjusted failure

rates using (17) if D = 1 or (16), (18), (12), and (15) if D = 2.

2. Choose a truncation xi � Ui, i = 1; : : : ; k and xk � L and an ordering of the states.
3. Choose a stockout penalty b.

4. Set h0(�;x) = h�0 (�;x) = 0 or use the �nal hn+1 and h
�
n+1 from a previous run. Set

�h(�;x1; : : : ; xk�1) = 0 or use (6) from a run with smaller L.

Value iteration

Compute hn+1 and Jn+1 from (3), using the ordering of the states and replacing hn with

hn+1 as it is computed at each state. Use (2) for the full model or (8) for the reduced

model. Compute h�n+1 and J
�
n+1 from (4), possibly modi�ed for the reduced model.

Enforce the truncations and xi = 0 boundaries and include the penalty at xk = L.

un+1(�;x) =

8<: 0 if the �rst term in (2) or (8) achieves the min

1 otherwise
Output average cost J�I = Jn+1 � �n+1b and service level �� = �n+1.

To check the truncation, compute the upper bounds Ni using Appendix A. If necessary, adjust

Ui and L as described above. Once the truncation is adequate, �h can be set using (6) and L

increased somewhat for similar runs. If the service level constraint is not tight, �� 6= �0, then
adjust b (search using the fact that ��(b) is nondecreasing).

IV. NUMERICAL RESULTS

The two- and �ve-machine examples listed in Table I were optimized. For cases 1 to 3, the

control point policy (CPP) is also evaluated. A CPP [10] is de�ned by

ui(�;x) =

8<: 1 if not starved, xi < Ci, and
Pk

j=i xj < Zi

0 otherwise.

7

Case � � pi ri c

1 0.64 1, 1 0.05 0.2 1, 1.5

2 0.64 1.5, 1 0.02 0.1 1, 2

3 0.4 1, 1, 1, 1, 1 0.2 0.5 1, 1.4, 1.6, 1.8, 2

4 0.4 2, 1.75, 1.5, 1.25, 1 0.2 0.5 0.125, 0.25, 0.5, 1, 2

5 0.4 2, 1.75, 1.5, 1.25, 1 0.02 0.1 1, 1.4, 1.6, 1.8, 2

TABLE I

PARAMETERS OF THE CASES

Optimal Best CPP

Case Cost Service Level % Suboptimal C1; Z1; Z2

1 22.37 0.7992 0.4 22, 23, 21

2 17.52 0.7388 1.5 8, 14, 14

TABLE II

POLICY COMPARISON FOR TWO-MACHINE CASES

It uses two production limits at each machine except k; set Ck = 1. The parameter Ci is the
capacity of buffer i and Zi is the base stock level of machine i, expressed in terms of the echelon

inventory
Pk

j=i xj; machine i produces at most Zi units in advance of demand. It is assumed

that Ci � zi � Zi � Zi+1, i = 1; : : : ; k � 1 and zk � Zk, so that in the absence of demand the
system will move to the hedging point x = z and idle.

For the two-machine cases, the best CPP is found by exhaustive search (Table II). For case

1 the CPP uses a large buffer limit and performs well because the optimal policy is nearly

base stock form (no buffer limits), consistent with [2],[1]. In case 2 the line is not balanced, so

the optimal policy is further from base stock: the CPP has a smaller buffer limit and does not

perform quite as well.

For case 3, the best CPP is not known. Instead, CPP1 in Table III was proposed in [14]

(their case 1). CPP2 and 3 are modi�cations of CPP1 suggested by the optimal policy. Their

suboptimality is in comparison to optimal policies (not shown) that achieve nearly the same

service level. CPP2 shows the importance of holding less inventory at the upstream buffers. CPP3

demonstrates that �nite buffer capacities are unimportant: when Ci is increased suboptimality

8

Policy Cost (% Suboptimal) Service Level C Hedging Point

Optimal 25.46 0.8914 � 0, 1, 2, 3, 11

CPP1 (18%) 0.8911 7, 7, 7, 7 3, 3, 3, 3, 8

CPP2 (4%) 0.8837 7, 7, 7, 7 1, 1, 2, 3, 10

CPP3 (0.8%) 0.9004 7, 10, 10, 10 1, 1, 2, 3, 10

TABLE III

POLICY COMPARISON FOR CASE 3

decreases.

The optimal policy for case 3 was computed using the truncation U = (7; 10; 10; 10; 15) and

L = 20, i.e., �20 � x5 � 15. The upper truncation for x5 is exact; the maximum of x5 under
the optimal policy is N5 = 11, which is also the hedging point. The other upper truncations

are not exact. They were set by testing sensitivity because the method of Section 3 did not

yield Ni < Ui. The full model contains over 12 million states. Using just the initialization

and monotone switching speedups, running 5000 iterations took 7 hours on a 1.5 GHz UNIX

workstation and found cost within roughly �10�3.
Speedup from each successive enhancement was tested on case 5 using the truncation U =

(3; 3; 3; 3; 12) and L = 20 (Table IV). The usual stopping criterion is too conservative to be

useful in measuring convergence. Instead, the (hundreds of) iterations needed for JI to be within

0.1% of its �nal value, computed from a longer run, was measured. For �exible VI, states are

ordered increasing in (�; x), i.e., x5 is the inner loop. The ordering with x5 decreasing required

about 100 more iterations. When h is initialized from a previous run, convergence would be

immediate if the parameters were unchanged. The stockout penalty b was changed from 60 to

58, typical of the change made when searching for �0. Starting with the lower bound penalty,

L is reduced to 15, still achieving more accuracy (within 0.2% of a run with L = 40) than

the L = 20 runs. The overall speedup is dramatic. Monotone switching reduced the number of

machine 5 minimizations by 97%. However, because of the overhead it requires, run time was

essentially unchanged. Slightly fewer iterations were required because a different state ordering

is used.

The reduced machine state model is evaluated in Table V. D = 2 is fairly accurate. Although

9

Additional enhancement Iterations Time (sec)

None 3300 357

Flexible VI 2900 258

Initialization 1100 93.6

Lower bound penalty 800 72.8

Reduced model (D = 2) 800 36.9

Monotone switching 700 32.0

TABLE IV

IMPACT OF ENHANCEMENTS, CASE 5 ON A SMALLER TRUNCATION

D = 5 D = 2 D = 1

Case Cost � Cost � Cost �

3 25.46 0.891 25.06 0.896 21.78 0.927

4 11.79 0.875 11.99 0.894 10.84 0.907

5 14.61 0.777 15.97 0.803 16.44 0.788

TABLE V

ACCURACY OF THE REDUCED MACHINE STATE MODEL

cost increases by 9% when it is used for case 5, service level also increases by 0.026, which

keeps the result near the D = 5 optimal frontier. Without adjusting the failure rate, the D = 2

cost is 6% less than the full model for case 3, compared to 1% with the adjustment.

V. EXAMINING NUMERICAL POLICIES

Figure 2 shows the optimal policy for case 2. The machine 1 switching curve has a �slope�

less than or equal to �1, with �1 representing a base stock policy, and the machine 2 curve is
nondecreasing, consistent with the conjectured transition monotonicity. When machine 2 fails,

the machine 1 curve is higher. Generally, failures were observed to turn a machine off but not

on. The control for case 1 is more nearly base stock because the line is balanced.

Many two-dimensional cross sections of the switching surfaces were examined for case 3.

All showed a nearly base stock form of policy: insensitive to upstream inventory and switching

curve slopes of �1 for downstream inventory. Switching curves are also insensitive to failures,

10

2x
M2

0
-5

5 10 1x

5

0

10

15

M1 α = (1, 1)

M1 α = (1, 0)

Fig. 2. Switching curves for case 2. Machine 1 (2) idles above the curve M1 (M2).

shifting down by no more than one unit when one or even three machines failed. Numerical

studies of similar systems have not detected a dependence on upstream inventory. Some of

the switching curves did shift up slightly when downstream inventory increased, suggesting

that optimal controls depend on upstream inventory. For example, machine 5 is idle when x =

(0; 0; 0; 1; 10) or (0; 0; 0; 2; 10), but not when x = (0; 0; 0; 3; 10), (0; 1; 2; 1; 10) or (0; 1; 2; 2; 10),

all of which are recurrent states with � = 1.

With faster machines upstream, case 4 is expected to have less of a base stock form. The

optimal hedging point is x = (0; 2; 1; 2; 6). The slope of �1 in Figure 3a shows that machine
1 responds to buffer 2 as a base stock policy would. However, the curve is shifted down from

the base stock curve, which idles machine 1 when x1 + x2 � 13. In fact, machines 1 and 2

are less sensitive to buffer 5: decreasing x5 by 10 only shifted the curves up 7 units, not 10.

The machine 4 curve in Figure 3b is slightly steeper, gradually deviating from base stock as x5
decreases.

Figure 3 also shows that the curves shift down slightly when a downstream machine fails.

The machine 2 and 5 curves shown are unchanged when any one machine fails. Also, no shift is

seen for machine 1 when machine 5 fails. Surprisingly, the shift for machine 1 when machine 2

11

M5

M4 α = (1, 1, 1, 1, 1)

M2

0
-5

5 10

5

0

10

15

M1 α = (1, 1, 1, 1, 1)

M1 α = (1, 1, 0, 1, 1)

0

-5

5 10

5

0

10

15

M4 α = (1, 1, 1, 1, 0)

(a) (b)

x4x1

x5x2

Fig. 3. Switching curves for case 4. (a) Machines 1 and 2, x3 = x4 = 1, x5 = �4. (b) Machines 4 and 5, x1 = 0, x2 = 2,
x3 = 1.

fails is smaller than the shift shown when machine 3 fails. In all the curves examined, the shift

when an upstream machine fails is negligible. Case 5, with long repair times, is more sensitive

to failures. Some switching curves shifted several units when downstream machines failed.

VI. CONCLUSIONS

Carefully adapting the VI algorithm made it possible to compute essentially optimal policies

for an unreliable �ve-machine line. One key was a method to set the truncation in accordance

with optimal buffer limits. This method could be applied to any network with monotone control.

For a given upper limit on buffers, algorithmic enhancements gave a 91% speedup on a test

case. Other possible enhancements include initializing value iteration with the associated �uid

value function [4] and, for certain networks, using a power series algorithm for the evaluation

step in policy iteration [16]. The numerical �ndings were

� Control point policies (CPPs) are nearly optimal for balanced lines (with 1% on examples).

12

� Base stock levels are more relevant than buffer limits in constructing a good policy. For

balanced lines a policy with no buffer limits is near optimal.

� A machine's optimal control is fairly insensitive to upstream inventory and machine states.

� Failures of other machines appear to switch a machine's optimal control only from producing

to idling.

These �ndings help justify the use of CPPs and similar policies. They also demonstrate the

feasibility of benchmarking heuristic policies against optimal ones for the moderate size networks

on which they are usually tested.

APPENDIX A. MONOTONE CONTROL AND BOUNDING THE RECURRENT CLASS

In this appendix a monotone control conjecture is made and used to compute the upper bounds

(5) from the optimal policy. A truncation xk � L is assumed to ensure that Ni is �nite. Certain
submodularity conditions on the value function induce a transition monotone type of policy,

namely, a controlled transition can only be turned on, not off, when another type of transition

occurs. Transition monotonicity is proven in [15] for a reliable series line, where it implies the

following properties.

1) There exist switching functions si(x(k)) such that machine i is on when xk � si(x(k)) and
off otherwise, where x(k) = (x1; : : : ; xk�1).

2) si is nondecreasing in xj , j < i (upstream inventory) and decreasing in xj , j � i

(downstream inventory) with slope no greater than �1, that is, si(x(k)+ej)�si(x(k)) � �1.
3) The switching functions de�ne the boundaries of the recurrent class.

We conjecture that this monotone structure also holds for our model.

Conjecture 1: The transitions fe1;�e1 + e2; : : : ;�ek�1 + ek;�ekg are monotone.
Under this condition, the switching function in machine state �, denoted s�i , has Properties 1

and 2. A second assumption is needed for Property 3; otherwise, a failure at machine j 6= i

could lead to a state beyond s�i . Let

ui(x) = max
�
ui(�;x) and si(x

(k)) = max
�:�i=1

s�i (x
(k)): (9)

Conjecture 2: s1i (x(k)) = si(x(k)), i.e., the operational state has the largest switching function.

Both conjectures are supported by all the numerical optimal policies we have examined. Let

X1 be the chain for reliable machines using the same policy u(1; x). Under Conjecture 2 the

13

recurrent class of the full chain is the same as that of X1, i.e., the operational state de�nes the

recurrent class. Also, Properties (2) and (3) apply to si.

Theorem 1: Assume Conjectures 1 and 2. Then

Ni = max
x
fxi : ui(x+ ei�1) = 1 and x+ ei�1 is accessible from x

by some permutation of machine 1; : : : ; i� 1 transitionsg+ 1:

In particular, for the �rst three buffers,

N1 = max
x
fx1 : u1(x) = 1g+ 1

N2 = max
x
fx2 : u2(x+ e1) = 1 and u1(x) = 1g+ 1: (10)

N3 = max
x
fx3 : u3(x+ e2) = 1 and

[(u1(x) = 1 and u2(x+ e1) = 1) or (u2(x) = 1 and u1(x� e1 + e2) = 1)]g+ 1:
Proof: We prove (10). Only machine 2 service increases x2, so

N2 = max
x
fx2 : x recurrent and u2(x) = 1g+ 1: (11)

By Property 2, x = argmax (11) has xi = 0, i = 3; : : : ; k� 1 and xk = L < 0 (if k > 2). Such
states are recurrent if and only if they are accessible from the recurrent state (1; 0). Failures

and machine 3; : : : ; k service transitions need not be considered, by Conjecture 2 and Property

2, respectively. Property 2 prevents the machine 1 (2) service transitions from crossing the

machine 2 (1) switching curve. Hence, (1; x) can be reached from (1; 0) by applying transition

�ek followed by machine 1 and 2 service transitions exactly when the conditions in (10) hold.

Note that x = argmax (10) lies on the intersection of the machine 1 and 2 switching functions.

The general proof establishes that Ni is the maximum of xi over states x that lie on the switching

functions s1; : : : ; si in the sense that there is some permutation of the machine 1; : : : ; i service

transitions that lead from x to x+ei and all these machines are idle at x+ei. Since only machine

i increases xi and, by transition monotonicity, service transitions at other machines cannot turn

machine i off, we may assume that the machine i transition occurs last. Thus, all permutations

of machines 1; : : : ; i� 1 must be considered.

14

APPENDIX B. ADJUSTED FAILURE RATE

Failure rates epi are derived for the adjusted model, in which at most D machines are down,

that satisfy (7). To simplify the calculations, we make the homogeneity assumptions

 = (�=�i)pi and r = ri for all i: (12)

Here is the time-average failure rate of each machine. Any stable policy has

E[d] =
k

r
: (13)

Clearly, we must choose D large enough so that k=r < D. Also, under the stationary distrib-

ution, the probability that machine i is busy while it is operational is

�=�i
1� �pi= (�iri)

=
=pi
1� =r =

�

pi
(14)

where

� = =(1� =r) (15)

is the time-average failure rate of a machine while operational. Because failures are operation-

dependent, E[ed] depends on the policy. We will approximate E[ed], assuming that failures are
time-dependent so that the time-average failure rate e� is a failure rate, making ed a birth-death
process. We can �nd the stationary distribution � of this chain in terms of e�, use it to compute
E[ed], then solve (7) and (13) for e�: Finally, using the fact that (14) is the same for both models,

Pfmachine i busy j machine i operationalg = �=pi = e�=epi
set epi = e�

�
pi: (16)

For D = 1, E[ed] = �1 = ke�=(r + ke�), e� = =(1� k=r), and
epi = 1� =r

1� k=rpi: (17)

For D = 2, a similar analysis results in

e� = k � r +
p
(r � k)2 + 2(2r � k)(k � 1)
(k � 1)(2� k=r) : (18)

Then (16), (12) and (15) are used to obtain epi.

15

ACKNOWLEDGEMENTS

The numerical study was done with W. Owen Webb and Jonathan Senning. I am also grateful

to Stanley Gershwin and Francis de Vericourt for their helpful comments.

REFERENCES

[1] F. Karaesmen and Y. Dallery, �A performance comparison of pull type control mechanisms for multi-stage manufacturing,�

Int. J. Production Economics, vol. 68, pp. 59�71, 2000.

[2] M. Veatch and L. Wein, �Optimal control of a two-station tandem production/inventory system,� Oper. Res., vol. 42,

pp. 337�350, 1994.

[3] M. Veatch and L. Wein, �Scheduling a make-to-stock queue: Index policies and hedging points,� Oper. Res., vol. 44,

pp. 634�647, 1996.

[4] R.-R. Chen and S. Meyn, �Value iteration and optimization of multiclass queueing networks,� Queueing Systems Theory

and Appl., vol. 32, no. 1-3, pp. 65�97, 1999.

[5] D. Bertsimas, I. Paschaladis, and J. Tsitsiklis, �Optimization of multiclass queueing networks: Polyhedral and nonlinear

characterizations of achievable performance,� Ann. Appl. Probab., vol. 4, pp. 43�75, 1994.

[6] J. Morrison and P. Kumar, �New linear program performance bounds for queueing networks,� J. Optim. Theory Appl.,

vol. 100, no. 3, pp. 575�597, 1999.

[7] J. Kimemia and S. Gershwin, �An algorithm for the computer control of production in a �exible manufacturing system,�

IIE Trans., vol. 15, pp. 353�362, 1983.

[8] I. Paschaladis, C. Su, and M. Caramanis, �Target-pursuing scheduling and routing policies for multiclass queueing

networks,� IEEE Trans. Automat. Control, vol. 49, pp. 1709�1722, July 2004.

[9] M. Veatch and J. Senning, �Fluid analysis of an input control problem.� Working paper, Gordon College, Dept. of Math.

Available at faculty.gordon.edu/ns/mc/Mike-Veatch/index.cfm, May 2003.

[10] S. Gershwin, �Design and operation of manufacturing systems-the control point policy,� IIE Trans., vol. 32, pp. 891�906,

2000.

[11] L. Sennott, �Computing average optimal constrained policies in stochastic dynamic programming,� Probab. in the Engr.

and Info. Sciences, vol. 15, pp. 103�133, 2001.

[12] E. Altman, Constrained Markov Decision Processes. Boca Raton, FL: Chapman and Hall/CRC Press, 1999.

[13] M. Caramanis, �Continuous time DP problems with controllable markov jump process dynamics.� Unpublished notes,

Boston University, Dept. of Manufacturing Engr., May 2003.

[14] F. de Vericourt and S. Gershwin, �Performance evaluation of a make-to-stock production line with a two-parameter-per-

machine policy: The control point policy.� To appear, IIE Trans., 2003.

[15] M. Veatch and L. Wein, �Monotone control of queueing networks,� Queueing Systems Theory and Appl., vol. 12, pp. 391�

408, 1992.

[16] G. Koole and A. Pot, �Workload minimization in re-entrant lines.� Technical report 2002-11, Dept. of Stochastics, Vrije

Universiteit, Amsterdam. To appear, Euro. J. Operational Res., 2005.

